NSTX Research Forum Dec 2009

MAST Status & Plans

Brian Lloyd EURATOM/CCFE Fusion Association

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Jointly funded by EURATOM & EPSRC

Present MAST status

Recent engineering break, incl. TS installation & TF maintenance, completed on schedule

Upgraded TS commissioned into plasma, calibrated & first data obtained

28GHz gyrotron (ORNL) system commissioned and first experiments carried out
performance limited by transmission line problems

Disruption mitigation valve commissioned & first data obtained

□ Two PINI sources operating at ~2MW (S-PINI) and ~1.5MW (SW-PINI) respectively – aim to condition to higher power during present campaign

- presently recovering from bend magnet failure on S-PINI
- p/s problems affected SW-PINI performance, now believed to be resolved
- spare PINI & new HVPS ordered (delivery 2010)
- further improvements in hand (DECEL supplies, crowbar, bend magnets..)

Nd:YAG TS upgrade

Collaboration with York University. COMPLETE

Stage 1: Replace 4 0.9J, 50Hz lasers by 8 1.5J, 30Hz lasers increasing temporal resolution and enhancing burst mode capability for NTM, ELM, pellet studies etc. Stage 2: New collection system and spectrometers, 120 spatial points, ~ 10mm resolution (now installed – first profiles obtained). High resolution edge TS and 300pt ruby TS single pulse system retained.

Scannell et al Rev. Sci. Inst. 2008

Nd:YAG TS laser triggering system

A 'Smart' laser triggering system has been developed to provide flash lamp and Q switch pulses for all the lasers – based on Field Programmable Gate Arrays (FPGAs)

□ Can synchronise Thomson scattering measurements to:

Start of shot Pellet injection NTM phase Other MHD events.....

Nd:YAG TS upgrade – magnetic islands

Nd:YAG TS upgrade – pellet deposition

Disruption mitigation

Heat loads reduced significantly with disruptions mitigated by MGI (collaboration with FZJ Julich, York University)

FUSION ENERGY

Other new capabilities 2008-09

ELM control/TAE coils: 6 + 6 internal array (n = 3)

□ Multi-channel MSE

- 37 spatial channels, better than 3cm, 2ms resolution

Divertor science facility

- Deployed for dust injection experiments

□ Improved edge, imaging & spectroscopic capabilities

- long wavelength IR camera, filtered fast camera, second filtered divertor camera, new spectrometers, retarding field analyzer (CEA collaboration)

□ Plasma control and long pulse datacq developments on-going

Multi-chord MSE

Divertor Science Facility (DSF)

- □ The DSF can support a wide range of potential activities, e.g.
 - Tile gap deposition studies ('castellated' probe) (ITPA DSOL-13, IPP Garching)
 - Diamond film exposure (Heriot-Watt University)
 - Impurity injection (DCU)

• Dust injection + stereoscopic IR imaging (EU-PWI, FZJ, RAL, Imperial College)

- Injection of particles with known shape/size to benchmark dust transport codes (e.g. DTOKS). W and C injected so far.

- IR cameras synchronized in time and frame rate allow dust trajectories to be tracked

DIMPLES TO HOLD DUST

Dust transport

Reconstructed tracks for carbon -1.4 z -1.6 Z (m) -1.8 -2.8

Reconstructed tracks for tungsten

Particles move in the direction of B_t and are directed upwards

-0.8

1.4

□ Velocities in the range 5-70 m.s⁻¹

Particle velocity lower than for carbon particles

Vertical motion more pronounced

Particle size at the limit of LWIR detection threshold

SOL ion energy measurements

□ Measurements of ion energies in the SOL recognised as a priority research area (EFPW Cork Dec 2008)

 \Box First measurements using RFA on loan from CEA show T_i ~ (2-3) x T_e

- $-T_i$ ranging from 15eV to 70eV when plunging from r-r_{sep} = +2cm to r-r_{sep} = -2cm
- TS measurements give $\rm T_e$ from 5eV to 30eV on the same range

□ Ion energy in ELM filaments - large signals observed as far as 20cm from the LCFS and up to 500V of biasing, cf. JET (analysis on-going)

Project launched to build RFA modules for the reciprocating probe and the Divertor Science Facility (DSF)

Revised operating schedule

M7 organisation

ITPA Commitments

Good progress

TC-1	Confinement scaling in ELMy H-modes: β degradation
TC-4	H-mode transition and confinement dependence on ionic species $$
TC-8	QH/QDB plasma studies $$
TC-11	He profiles and transport coefficients
TC-12	H-mode transport and confinement at low aspect ratio $$
PEP-6	Pedestal structure and ELM stability in DN
PEP-16	C-Mod/ MAST/ NSTX small ELM regime comparison
PEP-19	Basic mechanisms of edge transport with RMPs $$
PEP-21	The spatial and temporal structure of type II ELMs Dec 2009
PEP-23	Quantification of requirements for ELM suppression by magnetic perturbations from internal off-mid-plane coils $$
PEP-25	Inter-machine comparison of ELM control by magnetic field perturbations from midplane RMP coils $$
DSOL-2	Hydrocarbon injection to quantify chemical erosion Not doing
DSOL-13	Deuterium co-deposition with carbon in gaps of PFCs Jan 2010
DSOL-15	Inter-machine comparison of blob characteristics $$
DSOL-16	Determination of the poloidal fueling profile $$
DSOL-21	Introduction of pre-characterized dust for dust transport studies in the divertor and SOL

$\sqrt{1}$ = new data in 2009

ITPA Commitments

MDC-1	Disruption mitigation by massive gas jets $$			
MDC-2	Joint experiments on resistive wall mode physics			
MDC-4	Neoclassical tearing mode physics - aspect ratio comparison \checkmark			
MDC-5	Comparison of sawtooth control methods for neoclassical tearing mode suppression $$			
MDC-12	Non-resonant magnetic braking $$			
MDC-14	Rotation effects on neoclassical tearing modes $$			
MDC-15	Disruption database development (\checkmark)			
EP-1	Measurement of damping rate of intermediate toroidal mode number Alfvén			
	Eigenmodes $()$			
EP-2	Fast ion loss and redistribution from localised AE $$			
IOS-5.1	Ability to obtain and predict off-axis NBCD $$			

M7c:outstanding studies (1)

Substantial new data desired:

- □ EBW start-up studies at 28GHz (EU/US/JA collaboration)
- Exploit new TS e.g. NTM island transport etc (with York U)
- Exploit DMV first data on disruption mitigation obtained (with York U)
- TAE damping (vs. beta, q etc) following system improvements (Warwick, York, Imperial College..)
- Investigate β-limits and study effects of toroidal flows and fast ions on pressure limits. Measure RFA of applied field from internal coils.
- Assess intrinsic error field in MAST at high-β, including higher n components, and aim to improve performance with EFC
- $\hfill\square$ Confinement scaling β degradation

M7c:outstanding studies (2)

Extension/completion of on-going studies:

Pellet fuelling & particle transport

□ Further ELM control studies (e.g. ITER-like shape, influence of rotation, interaction with pellet fuelling)

□ Performance optimisation e.g. further ITB and hybrid mode studies

□ Complete NTM aspect-ratio comparison and studies of the effect of rotation on NTM onset in co-NBI (to complement existing counter-Ip scan)

Complete non-resonant magnetic braking (n = 2, n = 3) studies & cf theory (with Columbia U./PPPL)

- Extend NBCD studies to higher power
- Further radiative detachment studies
- Complete ELM/pedestal IEA/ITPA co-ordinated experiments
- □ Further exploitation of DSF (collaboration with CEA and UK universities)
- □..... etc

M8 organisation

	Campaign Areas		s Dri	Drivers			
	Exhaust Kieran Gibson (York U.) (new recruit) EU	Confinement & transport Martin Valovic Anthony Field Walter Guttenfelder (Warwick U.)	Stability Simon Pinches Ian Chapman	Current drive physics & profile optimisation Rob Akers Mikhail Turnyanskiy David Keeling Vladimir Shevchenko			
Main thrust ELM & pedestal physics Andrew Kirk, Hendrik Meyer, Liang (FZJ)							
	MAST Upgrade pl	hysics Hendrik	Meyer et al				
Other priorities	Exploitation of ne	w capabilities (e.g. TS	upgrade, 2D BES	etc)			
Operational	Scenario develop	ment Geof Cı	Inningham + Session L	eaders			
efficiency	Diagnostic optimi	isation Neil Cor	nway & diagnostic R.O	.s			

Links to ITPA, EFDA rationalised

MAST Campaign Area	Equivalent ITPA Topical Group(s)	Relevant EFDA Topical Groups/Task Forces
Current drive physics & profile optimisation	Integrated operating scenarios	Heating & current drive
Confinement & transport	Confinement & transport	Transport
Stability	MHD stability Energetic particles	MHD
Exhaust	Scrape-off layer and divertor	PWI

□ High level thrust on ELM & pedestal physics (incl. ELM control, L-H transition physics) (PAC recommendation)

 high profile ITER i/p, world class diagnostics, first class theoretical backup

ITPA priorities

MAST is well placed to make a strong contribution in the following areas:

□ H-mode access & pedestal physics

□ ELM control (incl. effects of RMPs on pedestal transport etc.) and alternative ELM regimes

Disruption mitigation

□ First wall divertor/wall heat loads (incl. effects of ELM control and disruption mitigation)

□ Fuelling & particle transport

□ Plasma rotation and momentum transport

Electron transport

□ Fast particle instabilities (incl. TAE damping), fast ion losses and impact (e.g. on NBCD)

NTM control (via improved understanding of onset thresholds)

EFDA Work Programme

□ Strong overlap with ITPA high priority R & D (as expected) with the addition of edge turbulence (characterisation of filamentary and intermittent edge and SOL turbulence).

□ In particular, ELM control, disruption mitigation, L-H transition physics, pedestal physics are priority topics where we expect MAST to make a prominent contribution.

TRANSPORT, MHD: MAST can contribute to almost all key areas

HEATING, CURRENT DRIVE & FUELLING: MAST well placed to study off-axis current drive & rotation capability of NBI plus pellet fuelling physics

PWI: Will focus on transient heat loads in 2010 (PAC recommendation)

DIAGNOSTIC developments (priority financial support):

- Fast ion D_{α} measurements, FIDA (with FOM)
- neutron emission (with Uppsala University, Sweden)
- 2D BES (with HAS, RMKI Hungary)
- fast edge Doppler spectroscopy for high frequency velocity (v_{ϕ}) fluctuations

M8 (2010-11) – new capabilities

□ Additional ELM coils (n = 4, n = 6) (PAC recommendation)

□ 2D BES system for long wavelength turbulence measurements (with HAS, RMKI Budapest) – EFDA Task

□ Collimated neutron detector (with Uppsala Univ.) – EFDA Task

□ EBW emission imaging diagnostic (with York University) – EPSRC project

□ Edge Doppler spectroscopy improvements for high frequency (\leq 100kHz) velocity (v_{ϕ}) fluctuation measurements (new detector – tender evaluation this week) – EFDA Task

Under development/consideration:

- □ Controllable mid-plane HFS fuelling
- □ Fast Ion D-Alpha (FIDA) diagnostic (with FOM) EFDA Task
- □ Retarding field analyzers for edge T_i measurements

Phase Contrast Imaging (PCI) system to extend turbulence measurements to higher wave-number (with NIFS, Japan) (PAC recommendation)

2010 – 6 additional ELM control coils

Will install 6 additional coils in lower array

❑ Allows n=4 and n=6 configurations as well as better alignment to q₉₅~ 5 discharges

Collimated Neutron Detector

Collaboration with Uppsala University, Sweden – EFDA Task

Flexible/modular neutron shielding (to allow collimator optimization)

❑ 4 channels (NE213 detectors) – orientation allows simultaneous monitoring of central and off-axis lines of sight and accommodates both DND and vertically displaced SND plasmas

Installation on the NPA rail (allows toroidal scanning)

EBW microwave imaging system

Collaboration with York University

Combines aperture synthesis and phased array techniques with direct digitization of vector IF signals

□ 3 dual polarized quad ridged horn antennas (10 – 40GHz)

□ 12-bit fast (100MS/s) ADCs

Exploring the potential of electron Bernstein wave emission as an edge plasma current density profile diagnostic (preliminary results using a fast spinning mirror system obtained in M7b)

